Blockchain for Business

Hyperledger Meetup
Frankfurt, 11. Mai 2017

Enterprise adoption patterns
Use case examples from practice
Into Hyperledger Fabric v1
Recap: Where the problems arise: book keeping across a business network

Every participant keeps their own ledger updated with their transactions

Transactions mostly bilateral message based

Each organization in the network has complex silos that require reconciliation
The business solution: Blockchains use a distributed ledger built by all participants

Blockchains shift the paradigm from information held by a single owner to the lifetime history of an asset or transaction distributed across multiple participants in a business network.

Instead of messaging-based communications, the new paradigm is state-based.

Smart Contracts incorporate business rules for the automation of transactions.

Technology Requirements:

- Append only Distributed Ledger
- Consensus Protocols for agreeing change to the ledger
- Cryptography based security and privacy/confidentiality
- Programable Smart Contracts
Hyperledger, a Linux Foundation project

• Announced by The Linux Foundation on December 17, 2015 with 17 founders, now over 130 members

• Hyperledger is an open source and openly governed collaborative effort to advance cross-industry blockchain technologies for business, hosted by The Linux Foundation.

• Hyperledger Fabric is a blockchain framework implementation and one of the Hyperledger projects, intended as a foundation for developing applications/solutions with a modular architecture

Enable adoption of shared ledger technology at a pace and depth not achievable by any one company or industry
Strategic Client Blockchain Adoption Journey

A multi-stage approach, delivering incremental and new business value at each milestone

RUN
- Internal Focus
- Digitise / BPO leveraging CBM
- Operational Efficiency
- GRC

CHANGE
- New Eco-Systems
- Select Existing SCM Partners
- Digitise / BPO leveraging CBM
- Operational Efficiency
- GRC

TRANSFORM
- Transformational Innovation
- New Business Models
- New/Adjacent SCM Partners
- New Revenue Streams

TIME
- Immediate Prototyping: Within 2-3 years
- Within 1-2 years
- Within 2-3 years

Deploy
- Shadow Blockchain
- Production Blockchain
<table>
<thead>
<tr>
<th>1</th>
<th>Providing network participants control of their business</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Provision for an extensible business network – Flexibility in membership</td>
</tr>
<tr>
<td>3</td>
<td>Permissioned but protected network – Protecting competitive data</td>
</tr>
<tr>
<td>4</td>
<td>Open access and collaborative global network – Collective innovation</td>
</tr>
<tr>
<td>5</td>
<td>Scalability – Transaction processing and data encryption processing</td>
</tr>
<tr>
<td>6</td>
<td>Security – New security challenges of shared business network</td>
</tr>
<tr>
<td>7</td>
<td>Coexisting with existing systems of record and transaction systems</td>
</tr>
</tbody>
</table>
IBM Global Finances’s blockchain solution addresses disputes management

Blockchain utilized to significantly improve resolution time for common disputes:

- Utilized data available from suppliers to deliver enhanced information to both Suppliers and Business Partners.
- Accomplished with no code changes to our core Commercial Financing system using shadow ledger approach.
- Integrated Blockchain into existing user interface.
- Enhanced data includes key information regarding shipments status which minimizes proof of delivery disputes.
- Established a ‘platform’ for competitive advantage.
- Continuing to work with our Suppliers and Business Partners to further expand blockchain capabilities.
CLS Group (CLS) has just announced plans to launch a new payment netting service for buy-side and sell-side financial institutions. The service, which is designed to settle payments outside the CLS settlement system, will allow clients to submit FX instructions for six products, including non-deliverable forwards (NDFs), and 24 currencies across multiple channels. They will also have the option to access the service through existing private and public channels.

Multi-bank foreign exchange counterparty CLS is to build a new payment netting service for trades settled outside the core membership using distributed ledger technology based on Hyperledger Fabric.

CLS says it wants to use its position to standardise and expand bilateral payment netting capabilities for the entire FX market, eliminating intra-day liquidity demands caused by inefficient bespoke approaches to netting throughout the market.

The company has signed up 14 banks as early adopters of the proposed service, which will accept FX instructions for six products, including non-deliverable forwards (NDFs), and 24 currencies over existing Swift-based channels.
Example: FX Netting

<table>
<thead>
<tr>
<th>What</th>
<th>Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lack of standardized payment netting process for trades not settled within current CLS PvP environment</td>
<td>1. It will enable them to submit FX instructions for six different products</td>
</tr>
<tr>
<td>Institutions intervene manually and inconsistently to complete netting process</td>
<td>2. When the product launches CLS will support 24 different currencies vs the 18 currencies it already offers</td>
</tr>
<tr>
<td>Higher costs and increased intra-day liquidity demands</td>
<td></td>
</tr>
</tbody>
</table>

How

- CLSNet will match FX instructions based on the same matching principles as the CLS core settlement service and will send a match notification to each counterparty. Allows all counter-parties to have the same validated record of transaction and fulfillment
Current business issues in the global distribution market

Banks
- Manual, paper-based processes
- Lack of Real-Time information

Importers and Exporters
- Excess Inventory
- Manual, paper-based processes
- Duplication of Administrative Process

Carriers
- No single version of "the Truth"
- Manual, paper-based processes

Forwarders
- Manual Data Collection
- Manual, paper-based processes

Ports
- Collection and Delivery Black Holes
- Sub-optimal stack placement
- Manual Data Collection

Authorities
- False Positives
- Lack of visibility pre-manifest
- Lack of visibility into land movement before/after ocean transport

Root Causes:
- Multiple data formats
- Point-to-point interactions
- Absence of messaging standards
Embedded video: MAERSK Blockchain can be found at https://www.youtube.com/watch?v=tdhpYQCWnCw
Hyperledger Fabric

Into v1
Embedded Video Hyperledger v0.6 Lessons Learned Video can be found at

https://www.youtube.com/watch?v=EKa5Gh9whgU
Architecture of Hyperledger Fabric v0.6

- **SDK**
 - keys

- **membership**
 - ECA, TCA, TLS-CA

- **peer**
 - Consensus
 - Ledger
 - Events
 - Chaincode
 - state

Arrows indicate:
- enroll
- transact
Architecture of Hyperledger Fabric v1

Source: https://jira.hyperledger.org/browse/FAB-37
Ledger representation

Transaction Log
- tx array
 - TX Read[]
 - TX Write[]

State Database
- Latest written key/values for use in transaction simulation
- Supports keyed queries, composite key queries, key range queries

CouchDB (external option)
- Supports keyed queries, composite key queries, key range queries, plus full data rich queries (beta in 1.0)

Key History index
- tracking history of a key

Block index
- blockHash → SegNo + offset
- blockNum → SegNo + offset
- txId → SegNo + offset

Replaceable

File System
- Level DB
Sample transaction: Step 1/7 – Propose transaction

Application proposes transaction

Endorsement policy:
- “E₀, E₁ and E₂ must sign”
- (P₃, P₄ are not part of the policy)

Client application submits a transaction proposal for chaincode A. It must target the required peers {E₀, E₁, E₂}
Endorsers Execute Proposals

E_0, E_1, & E_2 will each execute the *proposed* transaction. None of these executions will update the ledger.

Each execution will capture the set of *Read* and *Written* data, called *RW sets*, which will now flow in the fabric.
Sample transaction: Step 3/7 – Proposal Response

Application receives responses

The RW sets are signed by each endorser and returned to the application.
Sample transaction: Step 4/7 – Order Transaction

Application submits responses for ordering

Application submits responses as a transaction to be ordered.

Ordering happens across the fabric in parallel with transactions submitted by other applications.
Orderer delivers to all committing peers

Ordering service collects transactions into blocks for distribution to committing peers. Peers can deliver to other peers using gossip (not shown)

Different ordering algorithms available:
- SOLO (single node, development)
- Kafka (blocks map to topics)
- SBFT (tolerates faulty peers, future)
Sample transaction: Step 6/7 – Validate Transaction

Committing peers validate transactions

Every committing peer validates against the endorsement policy. Also check RW sets are still valid for the current state.

Transactions are written to the ledger and update caching DBs with validated transactions.

Key:

- Endorser
- Committer
- Orderer
- Smart Contract (Chain code)
- Ledger
- Application
- Endorsement Policy
Sample transaction: Step 7/7 – Notify Transaction

Committing peers notify applications

Applications can register to be notified when transactions succeed or fail, and when blocks are added to the ledger

Applications will be notified by each peer to which they are connected
Example of Multi-Channel with Endorsement

- Peers E_0 and E_3 connect to the red channel for chaincodes Y and Z

- Peers E_1, E_2, and E_3 connect to the blue channel for chaincodes A and B
Where to Ask Questions

Hyperledger Community has moved off Slack to RocketChat.

Go to chat.hyperledger.org and register.

You will be required to have a linux foundation ID however. If you aren't registered with the Linux Foundation, get an ID from https://identity.linuxfoundation.org/

For questions on Version 1.0, go to the fabric-questions channel.

Also every day, the docker build status is posted when passing the continuous integration tests will be posted on fabric-ci (only posted when tests pass)
Useful Information To Get You Started

• Support for Docker images for easy deployment for Hyperledger-fabric 1.0. Docker images will be available for all major components to run a network (peers, solo orderer, CLI, CA, Kafka, CouchDB). A “Getting started” section will be available in the Hyperledger-fabric publications. Getting started will help a developer or user to start the network, run a simple application, and learn the basics of running v1. See: http://hyperledger-fabric.readthedocs.io/en/latest/

• Support for a tool that helps bootstrap a network. The bootstrap network tool is available and called the Configuration Transaction Generator (configtxgen). The tool is designed to configure the network with organizations included in the ordering service genesis block and generates the configuration transaction artifacts used for channel creation.
Thank You!

Thomas Hartmann
Expert Consultant

IBM Global Business Services

IBM Deutschland GmbH
Wilhelm-Fay-Straße 30-34
65936 Frankfurt

Mobile: +49 171 2234 153
Phone: +49 7034 274 0608
Mail: thomas.hartmann@de.ibm.com